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i.
FOREWORD

This report is divided into two completely separate and distinct parts.
In Part I, Physical Optics Inverse Scattering, a physical optics approximation
to the monostatic electromagnetic inverse scattering problem is developed for
stationary perfectly conducting scatterers. In Part II, Exact Inverse
Scattering, a rigorous and exact solution tv the general inverse problem is
developed, which is applicable to the monostatic-bistatic electromagnetic
inverse scattering problem for moving scatterers of arbitrary conductivity.
This division into two distinct parts is necessitated by the totally
different approaches taken to the problem; although the results of Part I
are reaffirmed by the incidental first-order approximations developed in
Part II.
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ABSTRACT

PART I: A three-dimensional electromagnetic Inverse Scattering Identity,
based on the Physical Optics approximation, is developed for the monostatic
scattered far field cross section of perfect conductors. Uniqueness of this

I inverse scattering identity is proven. This identity requires complete
scattering information for all frequencies and aspect angles. A non-singular
integral equation is developed for the arbitrary case of incomplete frequency
and/or aspect angle scattering information. A general closed form solution
to this integral equation is developed, which yields the shape of a scatterer

'I from such incomplete information. A specific practical radar solution is
presented. The resolution of this solution is developed; yielding short-
pulse target resolution radar system parameter equations. Results of thei -- three-dimensional numerical reconstruction of a sphere and a cylinder from a
variety of aspect angle and frequency band limited cross section data are
presented. The merits of this solution over the conventional synthetic
aperture radar imaging technique are discussed.

PART II: The general inverse scattering and radiation problem
associated with the three-dimensional inhomogeneous scalar field Helmholtz

U wave equation is formulated as a Fredholm integro-differential equation of
the second kind. The far-field inverse integro-differential equation is
solved in closed form with the aid of a single resolvent integral operator,
which can be readily evaluated numerically with the aid of the fast Fourier
transform algorithm. The inverse integro-differential equation and its

1 solution are then generalized to the reduced vector wave equation resulting
iifrom Maxwell's equations. A formal statement of the inverse problem is

presented. It is shown that the first order Neumann series solution of the] inverse integro-differential equation as well as the first order term of
its exact solution represent the physical optics approximation and the
equations governing synthetic microwave holography. The (analogous) four-
dimensional inverse integro-differential equation and its closed form
solution, applicable to Doppler-contaminated fields radiated by moving
scatterers, is developed.

* I

* I
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PART I

PHYSICAL OPTICS INVERSE SCATTERING



SECTION I

INTRODUCTION

The Direct Scattering problem, whether electromagnetic, acoustic,

particle, or quantum mechanical, is defined as the problem of predicting

the scattered quantities, given the incident quantities, the relevant

description of the scatterer, and the appropriate laws governing the inter-

action. The back-scattering and forward-scattering problems are the special

monostatic case and the special bistatic case of scattering in the direction

of incidence respectively.

The Inverse Scattering problem is defined as the problem of determining

the relevant quantities describing the scatterer, given the incident and

scattered quantities, and the appropriate laws governing the interaction.

The Uniqueness and Well-behavedness problems must also be taken as an integral

part of the inverse scattering problem. The Well-behavedness problem is the

problem of determining the degree of smoothness and continuity with which the

so-called output data varies with respect to the so-called input data. The

uniqueness problem must also deal with the question of incomplete input data.

The Electromagnetic Inverse Scattering problem is thus defined as the

problem of determining the size, shape and electromagnetic properties

distributions (conductivity, susceptibility, and permeability distributions)

of a scatterer, given the incident and scattered electromagnetic fields, and

the electromagnetic field equations (Maxwell's equations and the appropriate

wave equations; the constitutive equations and their coefficients are taken

as part of the electromagnetic properties of the scatterer); and the determi-

nation of whether this problem is uniquely solvable for incomplete input

data, i.e., the various permutations of incomplete bistatic aspect angles,

incomplete monostatic aspect angles, incomplete frequency, monochromatic data

J _i • _bi.8! @i"i! !@'.•i ! "'.•!_i" "I i i~ll,*ilir: ,i'iiiili•'•i•:',"•-• W,,] l-iii,:'i:



only, incomplete polarization matrix, amplitude (power cross-section) data

only, and scattered far field data only. Also of interest is the inverse

scattering problem for which some a priori information about the scatterer

exists; e.g., that the conductivity of the scatterer is infinite (perfect

scatterer), that the geometry of the scatterer is of axial symmetry, etc.

For a physically more sophisticated and mathematically more rigorous

definition of the general inverse problem (including the inverse radiation

problem), the reader is referred to part II, sections IX and X.5 of this

report.

The subject matter of this part I is restricted to the monostatic far

field special case; a restriction being characteristically inherent to the

radar application. For mathematical reasons that will become evident to the

reader, the further special case of a priori knowledge of the scatterer being

a perfect conductor is treated. For both of these cases, special attention

is given to the further special case of the finite three-dimensional aperture;

i.e., the case for which monostatic scattering data is available for a

limited and incomplete frequency and aspect angle domain. From a practical

short pulse target resolution radar point of view, this special case is of

fundamental and primary interest.

The approach taken and the results obtained can be summarized as

follows. In Section II, the physical optics approximation is taken as the

basis for the direct scattering theory, and its validity for, and consistency

with, short pulse target resolution radar concepts is discussed briefly.

In Section III, with the aid of this approximation, a basic Inverse Scattering

Identity is then developed, that states that the characteristic function (in

three-dimensional space) of a scatterer is related to the field cross-section

(in three-dimensional k-space) by a three-dimensional Fourier Transform.

Uniqueness of the solution for finite sized scatterers is established. In

Section IV, a general, non-singular, inverse scattering integral equation is

developed, solutions to which permit the determination of an appropriate

maximum of information about a scatterer from incomplete scattering data.

The use of the Physical Optics approximation is further justified. In Section

2
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V, a closed form solution to this integral equation, valid for any arbitrarily

shaped finite k-space aperture (of incomplete frequency and aspect angles

scattering data), is developed. The full details of a practical frequency and

aspect angles band limited right rectangular quasi-conic section aperture are

then developed as an example. In Section VI, the spatial resolution of the

solution obtained is developed, yielding a set of short pulse target resolution

radar system parameters. In Section VII, the special cases of two- and one-

dimensional inverse scattering, the special case of certain given simple

geometrical shapes of the aperture, and the special case of a priori knowledge

of certain symmetries possessed by the scatterer, are discussed. The special

case of a priori knowledge of the scatterer being a surface of revolution

about some axis is treated in detail. In section VIII, results of the three-
dimensional numerical reconstruction of a sphere from a variety of aspect angle F
and frequency band limited cross section data, obtained numericaly by Mie's

exact solution for the direct scattering by a sphere, are presented. Similar

[ results for a cylinder are also presented. In section IX, plans for future

numerico-experimental work are outlined, and the extension of the monostatic

physical optics inverse scattering solution for stationary perfectly con-

ducting scatterers to a generalized monostatic-bistatic inverse scattering

solution for moving scatterers of arbitrary (unknown) conductivity is briefly

discussed. In the concluding section IX, conclusions are drawn about the

merits of the presented solutions over the conventional synthetic aperture

radar imaging technique.

I
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SECTION II

THE PHYSICAL OPTICS CROSS SECTION

The scattered magnetic field H8 in terms of the induced (by the incident

field) surface current density K on the surface of a perfect conductor is given

by [1]

Hs VoxK ds (1)

where the Green's function € and its gradient are given by

ikr
4= r (2)

ikr-1

r= -r- r . (3)

The Physical Optics Approximation [2] for the induced surface current

density in terms of the incident magnetic field H• is

2nxHfl, on the "illuminated" segment of s,
K =I (4)

0 , on the "shadow" segment of s.

Thus, by (1), (3), and (4), the scattered magnetic far field H', in terms

Iof the wave number propagation vector V8 of the scattered fa-. field, is

H= /2ikoxf H ds (5)
fi.n<O
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If the incident field Hz is taken as a plane wave of the form

=I e1k 'x (6)

in the vicinity of the scatterer, where ký is the wave number propagation

vector of the incident field, and the range and phase normalized (ir -the

coordinate system in which the scatterer is described) scattered far field
I is taken as

HIf 1 S eV x (7)

then for the case of

S = - I-k , (8)k

i.e., the monostatic case, (5) reduces with the aid of (2), (8), and the

transversality of the incident field to

S= ek ' k-ds I (9)

k .n>O d

Consistent with the conventional definition (3] of the power cross section

o and the field cross section p

S p I (10)

a pp* 42 4 HV (11)
IHI-12

equation (9) yields for the physical optics field cross section the well-

known expression [4]

f ,-21k'x k,, 
12p ~kX ds ,(12) -

k n>O

6
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For a short-pulse target resolution radar system to be effective, its

pulse length must be short compared to the target size; furthermore, since

the fractional bandwidth of such a pulse is limited by practical considerations

to nmuch less than unity, it follows that the largest wave length in the

spectrum of the transmitted pulse must be very short indeed compared to the

target size. The physical optics approximation (12) is thus a good model

for the direct scattering theory for such a short-pulse target resolution

radar system. For a detailed discussion of the physical meaning and

implications of the physical optics approximation, i.e., its being a total
first order local scattering theory, consistent with short-pulse radar

concepts, the reader is referred to an earlier work of this author [5].

7
.1
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SECTION III

THE INVERSE SCATTERING IDENTITY

Introducing the variable K defined as

- 2k (13)

yields for (12)

p(K) e=i~ K-ds. (14)

K fn>0

Thus

p*(-K) - f e- K.ds (15)

K.n<O

and

p(K) + p*(-K) = e K.dS + - Je K-dS (16)

K.n>O K.n<O

...i - K-IK X

- -Je' K'dS . (17)

S

A47 f+, s
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Since the integrand of (17) is continuous and differentiable on s and in

v banded by s, it follows by Gauss' theorem that

p(K) + P*(-K) = - V.(Ke dv (18)

V

= K
2 f e.X dv (19)

V

Introducing the quantity r(K) defined by

p(K) + p'(-K)r(K) - (20)

yields for (19)

r(K) = e dv . (21)

f

V

Defining the characteristic function y(x) of the scatterer by

t1 , xinv V

y(X)E= (22) -

0O, x not in v (

permits the reformulation of (21) as the three-dimensional Fourier integral

r(K) e 1)Cyx y(x) d3X . (23)

If the volume v of the scatterer is finite, then by (22)

< o; (24)

10 I



it thus follows from (23) that for finite sized scatterers the three-dimensional

inverse Fourier transforin of r(K) exists uniquely; i.e.

III... | 'J f d3

eY(x< (270 3 rK) d3K. (25)

With the aid of (20) (25) can be reformulated as follows

y(x) = ix .x * d3K + e d3  ; (26)
S47T5/2 K.-0

L

which, after replacing '(1>y -I-- in the second integral of (26) yields

i( C1 eKX (S_) K+ e-iK.X 0Cd ] (27)

4ir5/2 0 7 -

e d ] + s3 (28)
S45/2_ 41sd3K

II
Ge e .- X (29)

2Tr5/2 JC 3-2

Both inverse s,7att-erij identities (25) and (29) clearly require

complete scattering infornation; namely, knowledge of p(K) over all IC-space

(i.e., all frequencies wrd a1l- aspect angles).

Il
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SECTION IV

THE FINITE APERTURE INTEGRAL EQUATION

In practice p(K) is known Imeasurable) only for an incomplete finite

portion of the complete Ic-space; namely a K-space aperture consist-np of a

limited (finite) frequency band and a limited aspect angles band. Purthermol

(23) is valid only in the Physical Optics regime (wave length short compared

to the overall size of the scatterer), and hence (2S) must either include

fictitious (Physical Optics scattering data in the Rayleigh rexime, which is

physically not realizable) low frequency scattering data M('), or no such

data at all. It is thus to the problem of determining what can be deduced

about a scatterer (i.e., y(x)) from such limited high frequency finite

aperture data that the ensuing sections are addressed.

Let A(K) be an aperture function defined as

A(K) = C(P) W(K) , (30)

where C(K) is a characteristic aperture function defined as

I 1 , for I for which (I'() is known,
.()= (31")

0 , for K for which r(K) is unknown,

and where W(W) is any appropriately chosen (in general non-zero) aperture

weighting function, subject to the conditions

JA(K', d3ic . (32)

SPMSDIND PAGE BLAWNOT FIIMED
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Thus, if the K-space volume of the aperture is finite, and/or the

aperture weighting function is appropriately chosen, then the three-

dimensional inverse Fourier transforms of the aperture and characteristic

aperture functions exist uniquely, i.e.

PF

a (X)j = T- 3 e A(K) d3K (33)

C(X) = -- "ý 3 e C(K) d3 K * (34)

Co

Thus, by (25) and the three-dimensional convolution theorem for three-

dimensional Fourier transforms, it follows that

1 C_ IK-Xa(x)*y(x) = ("n)3 r(K) A(00) d3K , (35)

which by (30) and (31) reduces to

a(x)*y(x) 1 3 f e r(K) W(K) d3 K , (36)

•C

where r(K) is clearly known in the domain of integration C: i.e., the

aperture. The right-hand side of (36) can thus be taken as known; say the

known function g(x); i.e.

1 i K-X
g(X) (21T) u je r(K) W(K) d3 K . -(37)

The three-dimensional inverse scattering problem for a finite aperture

thus reduces by (36) and (37) to the three-dimensional non-singular convolution

integral equation (a Fredholm integral equation of the First Kind)

14
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I fa(X-X') y(X') d 3 x' = g(X) . (38)

This integral equation (38) can be solved ntuaerically by a variety

of existing techniques such as the matrix methods of Ritz-Galerkin [6], the
S~associated Least Square Best Estimate m.ethod [7], and the associated moments

method of Harrington [8], the Eigen-function expression method of

Toraldo Di Francia [9], leading to so-called super-resolution, and the

k-space method of this author [10), which also leads to super resolution.
Several closed form solutions of (38) for apertures of specific geometry

have been obtained by Lewis [11]; an alternate closed form solution of (38)

for apertures of general arbitrary geometry is presented next.

is

>1 K
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SECTION V

A SOLUTION OF THE FINITE APERTURE INTEGRAL EQUATION

The solution of (38) for y(X) is greatly facilitated by the special

properties of y(X) (i.e., a priori knowledge that y(x) is a characteristic

function of the form (22) ) and the possible judicious choice of the aperture

function F(0).

Let the x 3-axis be chosen as passing through the (near) center of

the aperture A (see fig. 1). Next, let the aperture function W(K) be

chosen as

W(K) = iK3 (39)

It thus follows from (30), (32), (33), and (34), and again the three-

dimensional convolution theorem for three-dimensional Fourier transforms that

a(x) =(x)*6(x1 )6(x 2 )6'(x 3 ) , (40)

where cCx) is known, i.e.

C(X = ()3 eKX d3 K • (41)

It thus follows from (38) that

c(X)*6(x 1 )6(x 2 )6'(x 3 )*y(X) = g(X) , (42)

which reduces to

17 IPnCEDI•f PArE BLANC..NOT FIU4ED
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K 3 ,X3

-APERTURE 00K

UPPER SURFACE Z(xl,x 2 )...,

-LOWER SURFACE Z'(x 1 ,x 2 )

j K1 , .- IMAGE APERTURE C*(-K)

J I I

FIGURE I

THE APERTURE AND SURFACE COORDINATE SYSTEM
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c * = g(x) (43);x3

Since y(x) is a characteristic function of the form (22); namely and

particularly, that for fixed values of x, and X2, Y(X3 ) is a dual step

'Linction in x3 of unity magnitude and steps at the lower and upper surfaces,

!.ay Z'(X l ,X2 ) and Z(Xl,X 2 ) respectively, of the scatterer (see fig. 1); it

,-ollows that

3Y = 6(X3 Zx,x 2 )) 6(X3 - Z(xl,x 2 )) (44)

ax3

which by (43) yields

c(x)*6S(X 3 - Z'(x 1 ,x 2 )) - c(X)*6(x 3 - Z(x 1 ,x 2 )) = 9(X) .

Examination of -(20), (26), and (37), and symmetry and physical

considerations (i.e., the implications of (4) and (12)), thus yields for

the upper surface Z(x 1 ,x 2 ) only

4I52 [K 3 p(K)_C(X)*6(X 3 - Z(X, X2 )) - - e ] d3K , (46)

provided

W(K) =W*(-K) ,(47)

which is assured by (39).

It is physically reasonable (by the implications of (4) and (12))
that information about the lower surface Z'(x1 ,x2 ) should only be obtain-

able from scattering da•ta from the lower image aperture A*(-K). It is now

evident that the introduction of the image aperture served the sole purpose

of a mathematical artifice which permitted the application of Gauss' theorem

to (12), yielding (25) and (29); and that knowledge of scattering data in

19
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this image aperture is not needed.

I The three-dimensional convolution on the left-hand side of (46), say

X(X), reduces to

X(x) c(X)*6(x 3 - Z(x),x 2 )) (48)

,X) dxll dxI (49)

Thus

X:X= -e d 3K , (50)
4 5/2 :

I IIII I c I K I
where X(X) is a resolution density function which is a measure of the location
of the upper surface Z(x1 ,x 2 ). That x(x) is indeed such a resolution density

function can best be visualized by considering the limiting case of an

infinite aperture function ACO) for which c(x) = 6(x); for such an aperture,

by (49)

x(X) = Xl-X) 6(X2-X1) S(x -Z(x',x')) dx' dx' (51)

-00

= 6(x 3 - Z(x 1 ,x 2 )) ; (52)

whereas for a practical realistic aperture of finite K-space extent, the

spatial extent of the non-vanishing portion of c(X), and hence the non-

vanishing portion of x(X), is still small compared to the size of the

scatterer (see Sect. VI). In fact, it is this resolution function x(X)

which determines the resolution of the solution (50); a resolution which can

only be exceeded by the super-resolution method mentioned earlier.

20-: L~C)

2' *, ,



A three-dimensional density plot of jx(X)I thus represents the

smeared geometrical image of the surface of the scatterer; the spatial extent

of the smearing clearly being the spatial extent of c(X), i.e., the

resolution.

A Best Estimate of Z(X 1 x 2 ) can alternatively be obtained by a variety

of correlation (between (41) and (49)) methods, employing Fourier transform

theory.

21
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SECTION VI

THE RESOLUTION

The resolution in x-space is clearly the spatial extent of the nearly

non-vanishing extent of x(X). It thus follows from (30) through (38) and (49)

that the resolution in any one direction in x-space is the reciprocal of the

K-spatial extent of the non-vanishing portion of the Characteristic Aperture

Function c(K) in that same one direction.

The finite aperture inverse scattering solution (50) can clearly be

reformulated in a variety of desired practical (radar) spherical coordinate

systems. For the particular spherical coordinate system shown in fig. 2,

i.e.

(cos sin
K = sin 1 (53)

cos • cos

d 3K = K- dK Cos E dE d (54)

the inverse scattering solution (50) for the right rectangular quasi-conic

section aperture shown becomes

K2 E0

= f f e iKX 2 sin f eiK COS (Xl Sin ; + X2 COS

X Cos dý cos 2 , dF, K dK , (55)

where
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K1 K- (56)

K2 IO + ý.AK , (57)

where K. and AK are the carrier and bandwidth of the transmitted spectrum

respectively.

Examination of (41) and (49), after a similar reformulation into this

same spherical coordinate system, readily reveals (after small angles

approximations) the resolution in range and cross ranges to be

Ax, = 1 A 2r* (58)

-X = (59)

AX3 = (60)

This resolution can only be exceeded by the earlier mentioned

techniques of super resolution.

Equations (58), (59), and (60) are thus the equations for the parameters

of a target resolution radar system.
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SECTION VII

THE SPECIAL CASES

The special cases of the one- and two-dimensional inverse scattering

problem (i.e., scattering data restricted to a K-space line or plane

respectively, obtained from a three-dimensional scatterer) can be treated by

applying the methods of Lewis [12) or of this author [13] to (30) et seq.

Namely, by choosing the characteristic aperture function for the two- and

one-dimensional special cases respectively as

C(K) = C(KI,K 2 ) 6(K3) (61)

C(K) = C(K) 6(K 2 ) 6((K 3 ) (62)

The three-dimensional convolution integral equation (38) reduces respectively

to the two- and one-dimensional integral equations

a(xl,x 2 )*B(x 1 ,x2) = g(x 1 ,x 2 ) (63)

a(xl)*(xl) = g(xI) (64)

where B and a are the thickness distrzibution function in the x3-direýtion

and the area distribution function orthogonal to the xl-direction of the

scatterer respectively, and-9g(X,x 2 ) and g(xI) reduce respectively to (see

(37) et seq.)

1 fC (Il+22

9(X 1 ,X2 ) )2 f e K 2 X2 ) r(K1 ,K 2 ) W(K1 ,K2 ) dK1 dK2  (65)

-~ C
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g(X) If e "C1X1  (66)

The non-singular integral equations (63) and (64) can be solved for a

and a by any of the previously discussed means.

The further special case of a priori-'knowledge of the scatteerei beiiag

a surface of revolution about the X2-axis (see fig. 2) can clearly be treated

by the preceding two-dimensional formulation (63) and (65) by recognizing

that the profile function (generatrix Of revolution) of the scatterer is

W0(,X 2); thereby further, simplifying (63) and (65) after the appropriate

modifications. A more direct treatment of the problem of the surface of

revolution will be presented subsequently.

The special cases of the aperture A(KC) being of certain given

geometrical shapes can be treated by applying the method of Lewis [14] to

(30) et seq.

The special cases of a priori knowledge of the scatterer possessing

certain geometrical symmetries can be treated by applying the methods of this

author [15] to (30)1 et seq. As an illustrative example, the case of the

scatterer known to be a surface of revolution about the X2-axis (see fig. 2), -

is presented next.

For such a scatterer, the monostatic cross-section clearly is

independent of the longitudinal aspect angle i; i.e.

- I

g =(K =) P(K1)d (67)

Furthermore, the profile function X3(X2) of such a surface of revolution

(see fig. 2) is given by the function describing the upper surface Z(xsx 2)

at the plane xj°o. It thus follows from taking the limits of integration

over ½ in (SO) as from 0 to 2s , setting x(=o in (50), and, with the aid of

the integral representation of the Bessel functions, that
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K2 •o

X e IeKXl sin ef I(Kx 3 COS •) p(K,E) Co082 dE K d, (68)(XlX3) 2r3/2

K1 -o

which for small angle approximations yields the doubly truncated two-

dimensional mixed Hankel (Fourier-Bessel)-Fourier transform

K
2

X(Xl,X 3 ) = r/ JI(KX3 ) e IKExI p(1 ,E) dC K dK (69)

It is noteworthy that, as expected intuitively, only two-dimensional

scattering information (in K and E; i.e., in frequency and one aspect angle,

the latitudinal aspect angle) is required for an inverse scattering

solution by (68) or (69).

Solutions are also obtainable for the various combinations of the

special cases cited.
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SECTION VIII

NUMERICAL RESULTS

The solution to the integral equation (38) proposed by Lewis [11] was

successfully numerically tested for a sphere by this author in 1969. This

test consisted of a computer implementation of a special case version of this

solution, applicable only to scatterers about which only a priori knowledge

of cylindrical symmetry exists. This test essentially confirms the correctness

of the basic inverse scattering identity (25) and the finite aperture integral

equation (38). This solution was, however, not pursued further because of its

inherent practical limitations. These limitations are the lack of generality

of the required k-space aperture (i.e., the required aperture is impractical

for physically realizable radar systems; which is not the case with this

author's solution 50), the error enhancement introduced by the process of

numerical differentiation of noisy scattering data (vis-a-vis the error

reduction resulting from the process of integration of such data in solution

50), and the unapplicability of the Fast Fourier Transform (FFT) to this

solution (which is essential if large amounts of data are to be processed in

reasonable time by existing computers, yielding three-dimensional high-

resolution descriptions of arbitrarily shaped scatterers about which no a priori

knowledge of special geometry exists).

Solution (50) was computer implemented with the aid of the FFT for

arbitrarily shaped apertures, realizable with existing radar systems. This

computer program was tested with the exact solution of Mie for scattering by a

sphere, with a variety of band limited aspect angles and fractional frequency

band widths a (see fig. 3), with the results shown in fig. 5 through 8. The

basic inverse scattering identity was also tested by this program; with results

shown in fig. 4.

It~~ ~ i 3 F EDW-C ?AGN BL&W-N~OT ~'IU4E
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Only x3 =O "slices" of the reconstructed scatterer are shown in fig. 4

through 8; however, several other than x 3 =0 "slices" were also numerically

reconstructed correctly, thus confirming the three-dimensional capabilities

of solution (50). A full band-width three-dimensional display of a recon-

structed sphere and cylinder are shown in fig. 9 and 10 respectively.

FIGURE 9

THREE-DIMENSIONAL DISPLAY OF RECONSTRUCTED SPHERE

FIGURE 10
THIREE-DIMENSIONAL DISPLAY OF RECONSTRUCTED CYLINDER
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SECTION IX

PRESENT STATUS AND FUTURE. WORK I-,ANS

The fast. Fourier transform computer program utilized in the numerical
work summarized in sect. 8 was.an in-core FFT program limited to about

16,000 data points. For increased resolution, particularly at high fre-
quencies, low band width, and small angular apertures., it is necessary to

have an FFT program operative on about (100)3 = 106 data points. Since data

of this size cannot be stored in core, and must be stored externally (e.g.,

drum or disc), an external-storage-FFT program is currently being implemented

under a follow-on contract. Under this follow-on contract, the inverse

scattering solution utilizing such an external-storage FFT will also be
tested against actual measured scattering data from a variety of modeled
shapes of varying complexity.

The physical optics inverse scattering solution developed in this

part I has been extended from the presented monostatic solution for

stationary perfectly conducting scatterers to a generalized monostatic-
bistatic inverse scattering solution for moving scatterers of arbitrary

(unknown) conductivity. This generalized physical optics solution tu-Ans out

to be identical -with the first order solution of the exact inverse scattering

solution presented: in part II. It is for this reason that this generalization

is not presented here.

! .

37-



SECTION X

CONCLUSIONS

The solutions developed in this part I can be viewed as solutions to

the frequency band limited and aspect angles limited short pulse synthetic

aperture radar imaging (and associated data processing) problem. The

solutions presented are based on rigorous electromagnetic scattering and

inverse scattering theory applicable to spatially distributed scatterers,

yielding real three-dimensional geometrical images; vis-a-vis the

conventional two-dimensional radar imaging technique which is based on the

heuristic approach of isolated point scatterers (scattering centers)

concepts, yielding so-called radar images (or maps) [16], which most often

do not resemble the real geometrical images of the scatterer.

The merits of the solutions presented in this paper over the

conventional radar imaging technique deserve the following further exami-

"nation. The rather unsatisfactory results of the conventional radaiý imaging

technique are essentially the consequence of the technique being based on a

heuristic approach to the problem; i.e., the approach consists of considering

a spatially extended target as a fictitious ensemble of identifiable,

stationary, non-interactive, non-dispersive, and isotropic point scatterers.

From a rigorous electromagnetic scattering point of view, a spatially

extended scatterer is neither an ensemble of point scatterers, nor are these

fictitious point scatterers in principle identifiable, stationary, non-

interactive, non-dispersive, and/or isotropic scatterers. (The point

scatterers are not always identifiable by virtue of the so-called registration

problem; i.e., that the point scatterers can be continuously, consistently,

and correctly identified for various aspect angles. The point scatterers

are not always stationary due to the fictitious relocation caused by changing

aspect angles.) Furthermore, this technique does not contain basic unique
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existence corside-rations, and/or rigorous considerations of the problem of

optimizing the results for incomplete aspect angles and/or frequency infor-

mation availability. The attempts to convert radar images to geometrical

images have thus failed for precisely these reasons.

The solutions of this part I alleviate all these objections to the so-

called radar imaging technique by the rigorous application of electromagnetic

inverse scattering theory, based on rigorous direct scattering theory (and

not based on the heuristic model of a spatially extended scatterer as a

fictitious ensemble of identifiable, stationary, non-interactive, non-

dispersive, isotropic point scatterers). It, therefore, avoids the problem

of the conversion of radar images to geometrical images, by sidestepping and

avoiding the radar image altogether, and addressing itself to the problem of

generating actual three-dimensional geometrical images directly fron radar

data; including unique optimal results from incomplete observation aspect

angles and frequency information.
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PART II

EXACT INVERSE SCATTERING
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SECTION I

INTRODUCTION

°L

In section II, the general inverse scattering and radiation problem

associated with the three-dimensional inhomogeneous scalar field Helmholtz

wave equation is formulated as a Fredholm integro-differential equation of

the second kind for the unknown fields and sources in the interior of a

closed surface in terms of the known *fields on this closed surface. It is

shown in section III that the known ansatz to this integro-differential

equation reduces to an angular spectrum Fourier integral if the closed sur-

face integral is taken over the far fields at infinity. in section IV, this

far field integro-differential equation is reformulated as a purely algebraic

equation in the spatial Fourier-transform k-space, yielding a purely algebraic

closed form solution for the unknown fields in this k-space. This solution

is then transformed back into the spatial domain, yielding a closed-form

solution to the far-field integro-differential equation, consisting of a

single integral resolvent operator, the resolvent kernel of which is the

steady state Green's :unction of the Poisson equation associated with the

inhomogeneous Helmholtz equation. This scalar inverse theory is clearly

applicable to quantum mechanics, acoustics, etc.

In sect. V, the inverse integro-diffexential equation and its solu-

tion are generalized to the vector wave equation resulting from Maxwell's

equations.

A formal physical and mathematical definition of the inverse problem

is given in sect. VI; which, in essence, defines the inverse problem as that,

of unknown boundary conditions and/or constitutive equations which define

the specific problem,. given the general laws and the specific solutions

which are the observable phenomenology.
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"The uniqueness, completeness, and well-behavedness of the inverse

solution is discussed briefly in sect. VII.

It is shown in sect. VIII that the first order Neumann series solution

of the inverse integro-differential equation, as well as the first order

approximation of the exact solution of this inverse integro-differential

equation, is identical with the equations governing synthetic microwave

holography. The physical- interpretation of this first order approximation

is discussed, and shown to be equivalent to the physical optics approximation.

A fast Fourier transform method for evaluating numerically the exact

solution to the inverse problem is presented in sect. IX.

In sect. X, the three-dimensional inverse integro-differential and its

closed form solution are generalized to four dimensions, with the surprisingly

simple result of the resolvent operator being algebraic. This four-dimension-

al solution is clearly applicable to Doppler-contaminated fields scattered

or radiated by moving scatterers.

Since a distribution theory approach was taken in sect. II through X,

appendix I consists of a simplified and unified rederivation of the classical

Kirchhoff solution to the direct radiation problem, presented for the sake

of convincing the reader of the validity, elegance, and power of this distri-

bution theory approach.

Appendix II consists of the reformulation of Maxwellts equations into

a form containing only the fundamental electric and magnetic fields (vis-a-

vis the form also containing the displacement and induction fields) and the

total charge and current densities (vis-a-vis the form containing the free

charge and current densities only), thus yielding an electromagnetic wave

equation universally valid for all media. Also developed in this appendix HI

is a suitably generalized constitutive equation - boundary condition relating

this total current density to these fundamental electromagnetic fields.

Both these reformulations are essential for the subject matter covered in

sect. V, et. seq.
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SECTION II

THE INVERSE SCATTERING INTEGRAL EQUATION

Gauss' theorem, when applied to the fector field V(gý), yields

ds.V(gý) dv V.V(gý) (1)

"S V

= f dv V2 (g0) (2)

V

provided V(gý) is continuous and, hence, differentiable in v and on s. These

continuity conditions can be totally dispensed with if the scalar fields

and g, and, hence, V(60), are taken as distributions [17]; specifically, if

Sis taken as a field satisfying the inhomogeneous (neither source- nor

singularity-free) Helmholtz (time-reduced wave) equation

V2 0+ ki; =-p , (3)

and g. is taken as the associated free-space Green's function

ikor
g(xix') 4 , (4)

r --x-x' , (S)

= j r-IrI� r (6)
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which satisfies the inhomogeneous differential equation

v2 g + k2 g -6 (7)

and where both f and g satisfy the radiation condition at infinity. (The

free-space wave number )= is designated by ko, vis-a-vis the conventional

notation k, since the latter will subsequently be used to designate the

Fourier transform variable of the spatial coordinate x).

In order to further convince the redder not familiar with distribution

theory and its validity and power when applied to field problems, this same

distribution theory approach is applied in appendix I to.the rederivation of

the classical Kirchhoff method of integration of the field equations for

the direct radiation (and scattering) problem, without imposing the continuity

restrictions, and, hence, without the classical singularity isolation spheri-

cal surface which is taken to the limit of vanishing size. The derivation of

the inverse scattering integral equation presented in this sect. II can also

be accomplished by such classical means; however, the resulting mathematical

derivation is beset with vastly increased cumbersome details, which only

obscure the physical meanings involved.

The left-hand side of (1) yields

fds.V(g.) = (g Vý + * Vg).dS (8)
s s

- g + A ~ds ,(9)

an an
S

and the right-hand side of (1) yields
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Ivdv V.V(g4) =Idv V.(g V4 + V Vg) (10)

f dv [V.(g V4) + V.(4 Vg)] (11)

V

=Jdv (Vg.V4 + g V24 + V4.Vg + 4 V2 g) (12)

V

fJdv (g V24 + @ V2 g + 2V4.Vg) , (13)

V

which, with the aid of (3) and (7) yields

dv V2(g4)) dv Eg(-ko2)-p) + 0(-49g-6) + 2Vg.V4)J (14)

fV fV

-f dv (-k2g4-gp-ko2g4-64+2Vg'V4) (15)

V

f Jdv (2g*V4) - 2k2 g 4-g p -4)(16)

V

= v(fVg.V-2kjgý)- dv gp -fvdv S4) (17)

VV V

If the field-point X' is taken as inside the volume bound by the

surface s, then

f d v 6 4 ) 4.( 8

V A

By the conventional Kirchhoff interpretation of (3) and (7) for the

internal (to s) field point X' (see appendix I),
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f dv g p + f( Vg- g V).dS (.19)

V S

where the right-hand side Kirchhoff surface integral of (13) represents the

contribution to the field at the field point X' inside s due to sources p

outside of s.

Thus, if all the sources are taken as in v (i.e., inside s; i.e.,

p(X)=O for all X outside s), then (19) yields

fdv g p = (20)

By a similar argument, if the sources outside of s do not vanish, then

these sources external to s must be taken as giving rise to an externally

imposed (external to the inverse problem) incident field given by (19)

as

f=- (0 Vg -g V)ds (21)

S

Equation (19) thus yields

f rdv g p (20.1)

JV
(20.2)

I!

where is the scattered field at the field point X'. Since the scattered

field also satisfies the Helmholtz equation (3), equations (1) through (20)

remain valid if the field * is taken as the scattered field *s only. Thus
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no formal distinction arises between the inverse radiation (active) and

inverse scattering (passive) problems.

With the aid of (18) and (20), (17) reduces to

J dv V2 (gý) 2 dv (Vg.V4 - kg ) - 2 (22)

V V

With -the aid of (8) and (22), (2) reduces to

Of - dv (Vg*VO - k2 g ) - f (g VO + 0 Vg).ds . (23)

V s

In the context of the inverse problem, the integrand of the right-hand
side surface integral of (23) is measurable, and, hence, this surface integral

is evaluable; it thus becomes convenient to take this right-hand side of (23)

as the known ansatz e to the inverse problem; i.e.,

o' f (g V. + 0 Vg)-dS (24)
s

By (23) and (24), the inverse problem can thus be stated by the

Fredholm integro-differential equation of the second kind

0 - dv (Vg-Vý - kg (2S)

EV

It should be noted that the classical Kirchhoff surface integral (see

appendix I) vanishes in general if both the field point as well as all the

sources are inside the surface (i.e., X'0 s and p(x)=O for all X + s), where

as the ansatz surface integral (24) does not vanish in general for these same
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conditions. The physical reason for the vanishing of the Kirchhoff surface

integral is clearly that there are no sources outside of this surface; since

this surface integral represents the fields produced by sources outside of

this surface. The mathematical reason for this vanishing is simply that the

C-) sign in the integrand renders the two integral terms as canceling each

other. Whereas the ansatz surface integral does not Vanish since these same

two terms add up by virtue of the (+) sign in the integrand (if the ansatz

is in the far field, then these two integrands (vis-a-vis integrals) are

equal). It is indeed remarkable that the sole distinction between these

two surface integrals should turn out to be the (+) vs. (-) sign in the

integrand, and that this sole transition from (-) to (+) should render the

Kirchhoff surface integral as a useful ansatz (surface integral) to the

inverse problem.

so,



SECTION III

anstz 24) THE FAR-FIELD INVERSE SCATTERING INTEGRAL EQUATION

Ifonly the far-field is known, then the Surface int~egral of the

anstz 24)can clearly be taken as a spherical surface at infinity. Let

R betheradius of this surface (see fig. 11); it thus follows that

Lii f R~ (g vý + *vg).R R2 dfl (26)

where the implied integration is now over the complete solid angle n~.

The gradient of the Green's function (see eqn. (4)) is'

*V =
ffo rA_--- = _-_ (ik:r - 1) r ,.(27)

+11

*1

wheire in the far-field bseanrvtion o pgt wsurave-ucesr tor (se

fig e11).P 29

Rwberte adius thefathisl oservatio propafg.aIt;ion th -us e voeowstoat (se

JJ

51

.4 -. g. -=.* 4 4 (-r - .. (27



FIGURE 11

FAR-FIELD GEOMETRY

The field * in the far-field (retaining only terms in 1 can be
expressed by virtue of the radiation condition at infinity, as (see fig. 11)

e ikoR
wcx, - p (k,) (30)

447 RI

where *Ck,) is now the range and phase normalized (relative to a given
coordinate system in which the far-field is measured and the near field , is,
to be determined; see fig. 11). V(ko) clearly depends on the observation

direction k. only. The factor v7 was chosen for the sake of consistency with
the conventional definition of power cross section. 4

The gradient of this far-field (30) is thus 4
ik*R eikoR R

O= - (ikor- 1) R p(ko) +- viko) , (31)V002R2 A7 R "

S2 -
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which, in the far-field (retaining only terms in reduces to

41Y R
ATk, R

With the aid-of -(4), (29), (30), and (33), (26) reduces to

et =re o [21k,*(k,)+V~(k.)1-R R2 dfl (34)

et:Im J (imit a -~orR [21ko.R *~(k,)+R-v*(ck 0) dfl (35)

-Snc *( aisolyi-h nua (observation) direction, and

not n te raialdirection, itfolw'ta(seig 1J

Also (see fig. '11)

k*R k (37)

Equationi (35) thus- reduces-to

-3/2 Limit fik,(r+P) R' ik. (4n-t) - - b(k.) dn (38)
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Examination of fig. 11 readily reveals that

Limit R ik,(r+R) 21kR -ik..x' I
R~ e e . (39)

Equation C38) thus reduces to

el= ik, (470/ 82ko fe'i X i(ke) dS . (40)

Since the arbitrary phase factor Of (2koR) is common to all the

measured ansatz, it becomes convenient to arbitrarily chose it as an integer

multiple of 2wr, thereby reducing (40) to

01 iko 40  ) / je *ko' t(k.) dfl (41)

It further becomes convenient to now interchange the variables X and

X' in (25) and (41); thus yielding the far-field integro-differential equation

and its ansatz respectively as

ý()- [V'g(XjX').V'cý(X') -k2. g(XjX') 4(%Xt)] dv' OW(X (42)

OW) ika (470 3/!2 -ik,.x *p(k.) dfl (43)

where the volume int~egral in (42), bound by the surface at infinity, is now

Over-all space.
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SECTION IV

SOLUTION OF• THE PAR-FIELD INVERSE SCATTERING INTEGRAL EQUATION

In cartesian coordinates, the Green's frnction g(Xix') can be written

as (see (4), (5), and (6))

g(x'l) g(X-X') . (44)

The integro-differential equation (42) can thus be written as the

'three-dimensional convolution equation

*(x) - j[V1 9 (Xx-X).V'4 (X?) - k2 g(x-X') *(x')] d3x' - O(x) (45)

which, in a more compact notation, is

€ -Vg*Vý + k2 g* = e , (46)

where the operation C*) designates the vector dot-product convolution.

If the fields and the Green's function in (46) are taken as distri-

butions for the sake of the existence of their three-dimensional Fourier

transform; i.e.,
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W(X) OW •(k) (47)

OW() +- (k) (48)

g(X) +• G(k) (49)

and, by the three-dimensional differentiation rule for Fourier transforms

vg(x) +A ik G(k) , (51)

I- then, by the three-dimensional convolution theorem, the three-dimensional
Fourier transform of (46) yields in the three-dimensional transform k-space

I the algebraic equation

SV(k) + k2 G(k) O(k) + ko G(k) V(k) e(k) (52)

[1 + (k2 + k) G 0= . (53)

I Furthermore, since for the three-dimensional delta-function taken as

a distribution

6(X) *-1 , (S4)

it follows that the three-dimensional Fourier transform of (7) yields in

k-space the algebraic equation
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-k 2 G(k) + k9 G(k) I - (SS)

Thus

G(k) = (56)
k2 -o

With the aid of (56), (53) yields

o(k) + (k2 + k=2) G(k) V(k) = O(k) (57)

/k2 + ki,
4 (k) + - O(k) = e(k) (58)

k2  2k-

+k2 +k 2 +S1+ k2- k9) k) = ek) (S9)

k2 kj 2+k

+ 4)(k) = o(k) (60)
A2 k2 k2 - Q

/ 2k2
S- k O(k) =(k) (61)

!k2 - k 2.

4O(k) =- - (k) (62)
2k2

+ O(k) k)  (63)

Next, the steady-state Green's function go,. given-by
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g 4(x) (64)

satisfies the Poisson differential equation (associated with the Helmholtz

equation (3))

V2 g.(X) - 6(X) . (65)

Again, taking this steady-state Green's function as a distribution,

assures the existence of the three-dimensional Fourier transform of this

steady-state Green's function; i.e.,

go(X) -*G.W) (66)

It thus follows from (65) by the three-dimensional differentiation

rule that

- k2G,(k) : - 1 (67)

t1

Gok) .(68)

Equation (63) can thus be written as

k2"
(k) = ½ e(k) -n G(k) e(k) , (69)
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and by the three-dimensional convolution theorem, it thus follows that (still

in cartesian coordinates only)

+(x) = O W(x) -Y go(x)*O(x) (70)

.2 (7
OW(X --ý ffJJgo(X-xt) OWx) d xf (71)

and, consequently, in any coordinate system

(x) = (x) - 2f g.(xIX) ) dv (72)

It thus follows by (64) that the solution to the integro-differential

equation (42) is

O(x) O ) 2 OW) dv (73)

It is remarkable that the resolvent kernel [18] of the integro-

differential equation (42) should turn out to be the steady-state Green's

function; the physical implications of this fact, which are yet unclear,

should be explored.
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SECTION V

THE GENERALIZATION FOR THE ELECTROMAGNETIC VECTOR FIELDS

The generalization of the previously developed scalar field inverse

scattering theory to a vector field inverse scattering theory applicable to

the electromagnetic field can be accomplished analogously to the generaliza-

tion of Stratton and Chu [19] and Franz [20] of the Kirchhoff method of inte-

gration of the scalar field equations to vector fields, applicable to direct

scattering or radiation; i.e., by replacing (1) with Gauss' theorem of the

form

dSxvx(gE) dv vxVx(gE) (74)

SV

f dSxVx(gH) f dv VxVx(gH) (75)

S V

where the electric and magnetic vector fields E and H satisfying the vector

wave equations

VxVxE - k• E = iwpo J (76)

VxVxH - k H = vxJ , (77)

which replace the scalar wave equation (3) used previously.
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From here on, the generalization proceeds in a fashion totally analogous

to the previously presented development; however, with the following one

important exception. The scalar theory developed consists of a single field,

and, hence, a single statement of Gauss' theorem (1) and a single wave equation

(:;). The vector theory consists of two fields (the electric and magnetic

fields), and, hence, a dual statement of Gauss' theorem (74), (75) and two

wave equations (76), (77). This dual set of vector equations, is, however,

coupled by a common source (the current density J in the wave equations (76),

(77)), as well as Maxwell's equations, which are a sot of first-order

differential equations for which there is no scalar analog, and which are

used to entwine the coupling.

Regretably, however, such a procedure, although executable, tends to

bog down in massive, cumbersome, and inelegant details, which tend to obscure

the physical meanings involved. An alternate, much simpler derivation, which

yields the identical results, will thus be presented next.

Prior to proceeding with this derivation, however, a digressionary

discussion of the form of Maxwell's equation most appropriate to the inverse

problem is in order. For organizational reasons, however, this discussion

is relegated to appendix II, to which the reader is referred.

The universally valid time-reduced vector wave equation for the

magnetic vector field H, in terms of the total currents J (see appendix II) is

VxVxH - k2 H =vXj , (78)

which reduces to

VV.H -V 2H- k H VxJ , (79)
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which, by Maxwell's second equation (see appendix II, eqn. (33)), further

reduces to

V2 H + k H =-V . (80)

If a source vector p is defined as

pvxJ , (81)

then (80) can be written as

v2H + k H =-p (829)

If H and p designate the cartesian components of the vectors H and

p respectively (where v=1,2,3.), then (82) can be rewritten in a mixed vector -

cartesian tensor notation as

V2 H + k2 H = - p ; u=1,2,3. (83)

Each of the three equations (83) clearly is of the form of the scalar
field wave equation (3), it thus follows that the entire previously developed

scalar field inverse scattering theory is applicable to each of the three

cartesian components of H and p. The inverse scattering integro-differential

equation (25) and its ansatz (24) can thus be written (still in mixed vector -

cartesian tensor notation) respectively as
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H, -fdv (Vg.VH - k2 g HU) =p=,2,3. (84)

V
r,

6= - dS.(g VH + H Vg) , p=1,2,3. (85)
S

which clearly can be reconciled into the. pure vector notation form

H?' dv (Vg.VH - k2g H) ' (86)

fV

of - f dS.(g vH + Vg H) (87)

s

Similarly, the far-field inverse scattering integral equation (42) and

its ansatz (43) yield respectively

H fdv'g (V'gVIH' - k2 g' H') = 0 (88)

0 - iko (4"r)-3/2 ie-k.x 0,(k,) da , (89)
f

where, by (30), the range and phase normalized magnetic far-field 0(ko) is

given by

e ikR

H (x) 4 0T= - (ko) 1 (90)
VA7 R

and again similarly, and finally, the solution (73) to this far-field inverpte

scattering integral equation yields
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H W. W k_.2-, . - 1 ) dv' (91)T7r fr

Unfortunately, however, no such simple derivation for the electric

field has been found to date. However, commencing with (74), (76), et seq.,

)a set of electric field equations totally analogous to (86) through (91) is

derivable; i.e., a set of equations (86) through (91) in which the magnetic

field H is replaced with the electric field E. The details of this

derivation are not presented here because of their cumbersomeness, and

because these details shed no light on the physical meanings involved.
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SECTION VI

I FORMAL STATEMENT AND SOLUTION OF THE INVERSE PROBLEM

An academic digression to a formal statement and definition of the

Sformal Te-statement, and definition of the classical direct problem is in

"r s tFeorder.

From a mathematical point of view, a direct problem consists of a

given differential equation, a given set of boundary conditions, and an

unknown solution (or spectrum of solutions). From a physical point of view,

"the differential equation represents the universally valid law, the boundary

conditions represent the nature of the specific problem, and the unknowns are

the observable phenomenology. Additional insight is gained by examining the

structure of the equivalent integral equation formulation of the direct

m problem. Mathematically, such integral equation formulations are in general

arrived at in the following fashion. An integral representation of the

I] differential -equation is obtained (usually by an integration of this

differential equation with the aid of an appropriate Green's function), which

is then combined with the appropriate boundary conditions to yield an integral

I equation. Physically, the integral representation of the differential equation
is merely an int 'egral restatement of the universally valid law, which, in

I general, clearly illustrates its global nature (i.e., that fields at one

point are determined by sources at all other points). Conversely, however,

I the boundary conditions are a restatement of the specific constitutive

equations, which determine the specific problem. Such constitutive equations

N I are in general local in nature (i.e., the specific relation between the

sources at one point and the fields at that same point only). The following

equivalence between boundary conditions and constitutive equations is thus

pRECEDIND MAE BLAWc-NOT FII14ED
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of importance. Mathematically, a constitutive equation is a spatially

distributed boundary condition; and, conversely, physically, a boundary

condition is a localized constitutive equation. (Such boundary conditions -

constitutive equations in general arise from a localized imposition of the
appropriate laws of motion governing the source distribution.) From an

integral equation point of view, it is this boundary condition - constitutive

equation that determines and imposes the given known domain of integration,

and, hence, the nature of the specific problem.

From a mathematical point of view, an inverse problem thus consists of

a given differential equation or its equivalent integral representation, a

given solution (or spectrum of solutions), and an unknown boundary condition

(or its equivalent domain of integration). From a physical point of view,

an inverse problem thus consists of a given universal law, a given (observed,

measured) phenomenology, and an unknown constitutive equation.

Having defined the direct and inverse problems in the preceding

fashion, it follows naturally that if the differential equation (or its
integral representation) stating the universal law is the unknown, then the

problem can be classified as the basic or fundamental problem (there exists
no formal methodology to date for solving such problems).

The following short table is thus in order:

PROBLEM CLASSIFICATION

MATHEMATICAL ENTITY PHYSICAL MEANING IF UNKNOWN, PROBLEM IS

Differential Equation Universal (Global) Law Basic, Fundamental
(or equivalent integral
equation representation)

Boundary Condition (or Constitutive (Local) Inverse
domain of integration) Equation

Specific Solution to Observable (Measurable) Direct
differential (or Phenomenology
integral) equation
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The inverse scattering (or radiation) problem is thus the problem of

determining the unknown boundary conditions - constitutive equations (i.e.,

the structure of the scatterer or radiator), given the field equations and

the incident and scattered (or totpý radiated) fields. The problem of deter-
mining the unknown soiirce distribution that gave rise to the observed

scattered field (or radiation), although intimately connected with the

inverse scattering for radiation) problem, is thus only incidental to, and

not the final objective of, the inverse scattering (or radiation) problem.

The distinction between the inverse scattering and inverse radiation problem

is the mathematical and physical triviality of whether the unknown structure

is radiating passively or actively, respectively (i.e., whether the observed

fields are measured actively or passively, respectively).

For the direct vs. the inverse scattering (and radiation) problem, the

following specific additional mathematically fundamental topological

distinction arises. For the direct problem, the Kirchhoff closed surface

integral f dS.(g V4 - * Vg) relates fields at a field point located on one

side of the closed surface to all the source distribution located on the other

side of this closed surface (see appendix I). For precisely this reason,

since the inverse problem is characterized by unknown fields as well as

unknown sources, this Kirchhoff surface integral is -thus rendered totally

useless to the inverse problem. However, the closed surface integral

dS.(g V4 + ý Vg) relates the fields at a field point located on one side of

the closed surface to the source distribution located on the some side of

this closed surface (see (24) and (25)). It is for this reason that this

latter closed surface integral is rendered a useful ansatz to the inverse

problem.

In the context of this definition of the inverse problem, it is thus

clear that neither a solution for the electric and magnetic fields (see (86)

through (91)), nor a solution for the total current distribution J that gave

rise to these fields, is a solution to the inverse problem; however, a

solution for the unknown boundary conditions - constitutive equations which

locally connect these electric and magnetic fields to the current distri-

bution, is a solution to the inverse problem. It is to this latter problem

that the remainder of this section is addressed.
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Given a solution for E and H by (86) through (91), the total current

distribution J can be computed on a local basis via the universally valid

Maxwell's fourth equation (see appendix II, eqn. (35) and (46)) for the total

current; i.e.,

J- iweo E + vxH . (92)

Thus, given the electric and magnetic fields, as well as the total

current density, the coefficients of the generalized constitutive equation

(see appendix II, eqn. (49)), which determine (reveal) the structure,geometry, and electromagnetic properties of the scatterer (or radiator), can

be readily computed. In fact, since these scalar constitutive coefficients
in the vector constitutive equation are over-determined by knowledge of the

vector fields, a least-square-best-estimate (in the presence of noise) of .

these coefficients can be determined as well.
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SECTION VII

UNIQUENESS, COMPLETENESS, AND WELLBTHAV£DNESS OF THE INVERSE SOLUTION

The problem of uniqueness, completeness, and wellbehavedness of the

inverse solution (under incomplete and noisy error contaminated ansatz) is

intimately connected with the algebraic nature of the k-space transform

representations (57) and (69) of the inverse integral equation and its

solution reprectively, the Fourier surface integral transform nature of the

associated ansatz (43), and the extension of the entire inverse theory and
its solution to the wide-band (short-pulse) case. For these reasons, both
the method of derivation as well as the final results governing the uniqueness,

completeness, and wellbehavedness of the solution are identical to the method

of derivation and results governing the physical optics inverse scattering

theory (see part I),. A further detailed investigation and study of this

subject is, however, currently being undertaken under a follow-on contract

(to contract covered by this report). A detailed treatment of this subject

is thus being deferred to subsequent report(s) covering this follow-on

contract.

i
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SECTION VIII

THE FIRST-ORDER APPROXIMATION.

The first-order approximation Neumann series solution of the general
inverse integTo-differential equation (23), with the aid of (24), clearly is

f - Vý + € Vg).dS (93)

s

which, for the far-field ansatz case, with the aid of (43), reduces to

(X)= - iko (4w) fe i e(k.) dQ (94)
Q

which turns out to be identical to the first-order approximation of the exact

far-field solution (73).

This first-order solution is identical to the synthetic microwave

-hoZography solution of Tricoles [21], which has already enjoyed considerable
experimental verification. The derivation of this first-order solution can.
thus be taken as the formal theoretical foundation of this synthetic micro-

wave holography.

In the derivation of the synthetic microwave holography equations, the

"ansatz" is taken as dS.(g Vý* - ý* Vg) where ý* denotes the complex

conjugate of the outwardly radiated field; which, in turn, heuristically
represents the "direction of propagation reversed" equivalent "inwardly
focussed" field. From a holographic point of view, this ansatz also could
have been taken a

have een aken as dS-g* Vý Vg*), vhere g* denotes the complex
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conjugate of the "outgoing" Green's function; which in turn represents the

"ingoing" Green's function. Since the complex conjugate of both the field

as well as the Green's function satisfy differential equations similar to (3)

and (7) respectively, i.e.

V2ý* + k * = -p* (9s)

V2 g*+kog*=-6 , (96)

it thus follows that the entire development of this report could also have

been done in terms of either this complex conjugate field or this complex

conjugate Green's function; with the sole exception that the ansatz would

have turned out to be the above holographic ansatz with the (-) sign in the

integrand (vis-a-vis the (+) sign in the integrand of (93)). It should be17 pointed out that in the case of the electromagnetic vector field ansatz (74)

and (7S), only conjugation of the Green's function yields the current results.

Such an approach, although heuristically somewhat attractive, tends, however,

to burden the rigorous derivation of the exact inverse formulation and its

solution with mathematically cumbersome details, which also obscure the

physical meanings involved.

An -investigation of the properties, limitations, and physical meaning
of this first-order approximation (93) and (94) will be taken up next. To
this end, let the source distribution p be computed -from this first-order

approximation; i.e., by the basic wave equation (3),

p V2 ,-k2cjl , (97)

thus, by (94)
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p= iko (4)-) 2 (V2 + k9) fe-ikX k d (98)

= ike (4)-3/2 (V2 + k2 ek 0 'x )(k 0 )dn (99)

= ika (47)0-/2 (-k2 + k2) -ik..x p(ko) dQ (100)

if

=0 (101)

The same result of (101) can be obtained, although mathematically much

more laboriously, by replacing (94) with (93) in (98).

It thus follows from (101) that the source distribution is not

-reconstructable from the first-order solution; and that the fields reconstructed

by this first-order solution satisfy the homogeneous free-space wave equation

*V2 + k = (102)

This first-order reconstructed source-free field, satisfying the free-

space wave equation, is thus consistent with synthetic holography interpreta-

tion of the first-order solution (93). The physical meaning of this first-

order solution is thus that of first-order scattering (or radiation), and

consistent with the physical optics approximation (direct "rays" only).

The reconstraction of the unknown boundary condition - constitutive

equation (see sect. VI) which determines the unknown geometrical structure

and unknown electromagnetic properties of the scatterer (or radiator) requires

knowledge of both the fields and the sources. Thus, since the first-order
solution cannot reconstruct the sources, it follows that from an inverse
scattering point of view (see sect, VI), that the first-order solution
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possesses the critical pathology of not being an inverse solution at all.

Examination of the complete solution (73) thus reveals that all the

source distribution information, and, hence, all the formal inverse scattering

information, is contained only in the resolvent operator of (73); i.e., in

all the higher-than-first-order Neumann series solution terms.
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SECTION IX

NUMERICAL EVALUATION OF THE RESOLVENT OPERATOR

BY MEANS OF THE FAST FOURIER TRANSFORM

V Let N be the number of data points in the three-dimensional space X

for which the ansatz OWx) has been evaluated by (43). Evaluation of the field

S(X) for these N points in X by conventional numerical integration, as implied

by the resolvent operator in (73), will thus require N2 multiply-add operations

and storage allocations. To recognize that this is an untenable situation

requires merely an examination of the practical order of magnitude of N.

A minimally reasonable three-dimensional resolution of the field is of the

order of 100 points in each of the three dimensions'; i.e., N=1O 6 and N2 =I0 12 ,
which is totally unacceptable in practice for even the largest and fastest

state-of-the-art computers.

In cartesian coordinates, the resolvent operator solution (73) can be

written as the three-dimensional convolution equation

O(X) O W 0(x) - k? 1 *6(X) (103)

The resolvent kernel "drops off" with distance as ; its effect isr
thus localized to the neighborhood of the field point. The resolvent kernel

can thus be truncated at a few wave lengths away from the field point without

introducing much of an error, and can certainly be truncated to the complete

x-domain V(X) in which a solution for the field *(X) is sought, without

introducing much of an error at all. Solution (103) can thus be represented

by the finite three-dimensional convolution
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O2ffC
*(X) = ½ 0(X) - 8(xT 3x " (104)

V(x)

This finite three-dimensional convolution can clearly be evaluated

numerically with the aid of the fuat Fourter tranaform [22] algorithm applied
to a discrete convolution E23], for the execution of which the required

number of multiply-add operations reduces to N log2 N and the required number
of storage allocations reduces to N. For the previously mentioned practical

case of N=10 6 , N log2 N - 2xW0 7 , and is thus executable on the CDC 7600 in

less than five minutes 124].

For large number of far-field data points *(ko), it similarly becomes

desirable to numerically evaluate the ansatz (43) with the aid of the fast

Fourier transform. This is possible since the ansatz integral (43) is

essentially a Fourier-surface-integral in the observation transform k-space;

i.e., since

d dsk
dQ (l0S)d•=k2 i5;

where dsk is the differential k-space surface element, it follows from (43)
that

0(X) =----- -ik) x *(k) dsk (106)(470 72 k.
sko

where the closed surface integration in (106) is over a spherical k-space

surface of radius ko. t(The full details of the application of the FFT to

(106) will be presented in-subsequent report(s) covering the follow-on

contract to the contract covered by this report).
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"SECTION X

FOUR-DIMENSIONAL FORMULATION OF THE INVERSE THEORY

X.l. INTRODUCTION

The objective of the four-dimensional formulation of the inverse

problem is to develop an exact inverse theory applicable to time dependent

(i.e., moving, rotating, and deforming) radiators and scatterers, utilizing

wide-band short-pulse Doppler data. Some aspects of this objective, such as

wide-band inverse scattering, can readily be obtained by reformulating the

frequency domain inverse solutions into the time domain with the aid of the

time-frequency Fourier transform. However, other aspects of this objective,

such as the utilization of Doppler data, are at best, extremely difficult to

obtain by such means. The source of this difficulty is that all time

dependent solutions must be invariant under a Lorentz transformation, which

is notoriously cumbersome in three-dimensional formulations (particularly

if higher than velocity order effects such as acceleration and jerk are not

to be neglected) and remarkably simple in four-dimensional formulations.

A four-dimensional relativistically invariant formulation of the inverse

problem is thus a most logical approach.

A four-dimensional scalar theory, consistent with the three-dimensional

scalar theory developed in the previous sections is presented next. Since

the method of derivation of the four-dimensional inverse integral equation

and its solution parallels closely the method of derivation of the previously

presented three-dimensional theory, this derivation is presented in a brief,

but complete, form. However, since again a distribution theory approach is

taken, this derivation is commenced with the brief but concise rederivation
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of the well-known four-dimensional formulation of Stratton [25] of the direct

problem, using this distribution theory approach. The purpose of this

rederivation is not its elegance, but, as was also the rationale for the

presentation of appendix I, its lending credence to the distribution theory

approach taken.

X.2. FOUR-DIMENSIONAL FORMULATION OF THE DIRECT PROBLEM

Gauss' theorem applied to the four-dimensional vector field

(gO - * og) yields

f.da.(g oo - 03og) =JdT o'(g o0 - og) (107)
a T

where a is a closed three-dimensional hyper-surface in a four-dimensional

hyper-volume T, where the four-dimensional scalar field 0 and free-space

Green's function g satisfy the inhomogeneous wave equations

2= p (108)

2g= - (109)

respectively, and where

1

g = ; r = x- x' , r = Irl (110)
4ir2 r2

Thus, by (107) through (109),
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-2:i --_ _- :: : 02g)da.(go4) - 4)og) dT yLq (yU90 +LI g 0

a=0

SJdr (g 024) - 4) 2g) (112)

f -JdT g p + dT dr 6 (113)

T T

dT4) 6 = )' for all X' E T (114)

T

Thus, by (113) and (114),

4' =f dr g p + Jda.(g 04) - og) (115)

T a

which is the solution of Stratton [26] for the four-dimensional direct

radiation problem.

X.3. FOUR-DIMEINSIONAL FORMULATION OF THE INVERSE PROBLEM

Gauss' theorem applied to the four-dimensional vector field (g9)

yields

f da.O(go) fdT. 00(go) (116)

a T

SdT O2 (91) (117)

T
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which, by (108) and (109) yields

f da- (go.+ 0g) =d-ro0(g oý+ *og) (118)
a hT

=f dT (Og.o[ + g 02, + O¢'Og + *0 2g) (119)I
f dT (2OgO -g p - 6 6) (120)

T

If all the non-vanishing source distribution is in T (i.e., p(X)=0

for all X • r), then by (11S)

fd'g g p (121)

Furthermore,,

f dT• 6= , for all X'G . (122)

T

Thus, with the aid of (121) and (122), (120) yields

Jda(g oý + gog) = 2fdTo9.Oi -2 (123)
a T

I *' -fd Og9 .. o= - da.(g .+og) , (124)
T a

which is the four-dimensional and integro-differential equation representation

of the inverse problem.
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X.4. SOLUTION OF THE "FOUR-ýDIMENSIONAL INVERSE PROBLEM

Let 0 be the known four-dimensional ansatz to the inverse problem, i.e.,

- - ½ da.C(g o + tog) (125)

V a

The far-field ansatz is thus represented by a three-dimensional hyper-

surface at infinity, and the resulting four-dimensional domain of integration

over T in (124) is thus over all of four-space. For such a far-field ansatz,

(124) thus becomes

' _f d- Og.O = -' (126)

which, by virtue of (110), in four-dimensional cartesian coordinates is

g(xI) - fjfo 9 (x'-x).o(xI d4x = 6(Xt) , (127)

which can be represented by the four-dimensional convolution equation

0 -Og.Oý = 6 , (128)

The four-dimensional Fourier transform of (128) thus yields (with the

aid of the appropriate differentiation rule o 0 ik) in the four-dimensional

transform k-space

€ + k2 G €P 0 0 ,(129)
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where

(130)

G ++ g .(131)

Similarly, (109) yields in four-dimensional k-space

1 (132)k

Combining (129) with (132) thus yields

(133)

which, back in x-space, yields

[ =,(134)

which, with the aid of (125), yields the desired solution

I = - da.(goý + iog) , (135)

where the domain of integration is a closed three-dimensional hyper-surface

at infinity.
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It is most remarkable that the resolvent operator of the four-

dimensional inverse integral equation (126) is pure local-algebraic (i.e.,

of the form (134)), vis-a-vis the -resolvent operator of the three-dimensional

inverse integral equation (25), which is a global integral operator (i.e.,

of the form (73)). This simplicity, which' occurs in four-dimensional space

only, is intimately connected with another remarkable property unique to

four-dimensional space; namely, that the functional form of the Green's

function in k-space is invariant to the dimensionality of the space, which is

not the case in x-space; and, that only in four-dimensional space, is the

functional form of the Green's function the scme both in x- and k-space [27);
i.e.,

1 1

G(k) = - = g(X) (136)

in four-dimensional space only.

X.5. CONCLUDING REMARKS

The extension of the preceding four-dimensional scalar field inverse

theory to vector and tensor fields, appropriately applicable to electro-

magnetic fields, can be accomplished by means somewhat analogous to those of

sect. V.

The Lorentz-invariant four-dimensional reformulation of Maxwell's

equations for the total charge and current densities in terms of the

fundamental electromagnetic fields (see appendix II, eqn. (32) - (35)),

which is needed for the previously mentioned extension of the inverse theory,

can be accomplished by most conventional means.

A four-dimensional Lorentz-invariant generalized boundary condition -

constitutive equation (see appendix II, eqn. (38) and (49)), which is
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essential to the final objectives of a four-dimensional inverse theory (see

sect. VI) is similarly obtainable.

The various permutations and combinations of the special case

solutions (and their details) for wide-band short-pulse data, monostatic-

bistatic data, Doppler data, and incomplete ansatz data, etc., can be

extracted from the general solution by an appropriate choice of the four-

dimensional geometry, the coordinate system, and the domain of hyper-surface

in integration implied by the ansatz (125) and the general solution (135); i.e.,

by an appropriate choice of the "world-line" of the observer relative to the

radiator or scatterer, or vice-versa.

The work outlined in the preceding four paragraphs is currently being

undertaken under an appropriate part of a follow-on contract to the contract

covered by this report, and will be covered in detail in subsequent report(s)

to this follow-on contract.

Since, as was the case with the three-~dimensional inverse solution (see

sect. IX), the four-dimensional inverse solution (135) can be formulated as a

convolution; it can thus similarly be evaluated numerically with the aid of

the fast Fourier transform applied to its equivalent discrete convolution

representation. However, since such a convolution is four-dimensional, the

* I size of practical data (eg., (64)4 = 1.7x10 7) will utilize to the limit the

size and speed of the biggest and fastest existing computer [281. Next

generation computers, such as Star or Illiac, will not be taxed to the limit

of their size and speed by four-dimensional problems of practical magnitude.

An alternative practical means of evaluating (135) is by a hard-wired Fast

Fouxrter Analyzer (i.e., by special purpose computer, vis-a-vis the software

compiled FFT on a general purpose computer). A further alternative might be

a Fourier analog optical processor.

In previous attempts at a formal definition of the inverse problem

(see sect. VI), the seemingly logical classification of the direct vs. the

inverse problem in terms of the unknown being the effect vs. the cause

respectively, has purposely been avoided for reasons that will be discussed
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next, The topological distinction between the three-dimensional direct and

inverse problem has previously been shown to be that of whether the unknown

fields and sources are on different or the same side of the closed surface

ansatz integrals fdds-(g V4 ; ý Vg) respectively. This topological
distinction clearly carries over into four-dimensions for the closed hyper-
surface ansatz integral fda.(goý - rog). However, because of the temporal

nature of the added fourth dimension and the (lorentz transformation invariant)

causality principle, it is now clear that no Lorentz-invariant distinction

between the direct and inverse problems can be made on the basis of cause

and effect.

8
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APPENDIX I

SIMPLIFIED AND UNIFIED REDERIVATION OF THE

INTEGRATION OF THE FIELD EQUATIONS FOR THE DIRECT PROBLEM

Gauss' theorem, when applied to the vector field (• Vg - g Vt), yields

fdS.(ý Vg - g VO) =f dv V'(0 Vg - g Vý) (1)

S V

provi4ded (0 Vg - g Vf) is continuous and twice-differentiable in v and on s.

These continuity conditions can be totally dispensed with if 0 and g and,

hence, (4 Vg - g VO), are taken as distributions [29]; specifically, if ' is

taken as a field satisfying the inhomogeneous Helmholtz equation

V2 0(X) + k2 4[X) = - p(X) (2)

and g is taken as the associated Green's function

ikrSg(x IX,) = e (3)

r = x - x' (4)

r =Irl (5)

1,SCDI P'AGE BLAZENOT FIII4ED
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which satisfies the inhomogeneous differential equation

v2 g(X) + k2 g(X) = - 6(X) (6)

and where both * and g satisfy the radiation condition at infinity.

The right-hand side volume integral in (1) reduces to

fvdv V'(ý Vg - Vý) fdv (VO.Vg + V2 g- Vg.V - g V24) (7)

V V

f dv (0 V2 g - g V24) (8)

which thus yields for (1)

dS-(ý Vg- g VO) dv (0 V2 g- g V2 ) (9)

S

4 which is known as Green's second identity in Green's theorem.

With the aid of (2) and (6), (9) reduces to

f dS-(o Vg - g VO) =fdv [f(-k 2 g-6) - g(-k 20-p)] (10)

s V

fdv (-k 2 gý - 60 + k2 g4 + gp) (11)

v

=fdv (-60 + gp) (12)

V
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ds- Vg 9V v 6 v p'13

If the field point X1 is taken as inside the volume v bound by theS• ~ surface s, then the first volume integ~am on the Tight-hand side of (13) ,

yields by the very definition of the deft-function

f dv S(X-X') 4,(X) = (x') X v . (14)

V

te Similarly, if the field point X1 is taken as outside this volume v,

f •dv S(X-Xt) ý(X) = 0 ; t ' v .(5

And similarly again, if the field point X' is on the surface s
bounding the volume v, then

fdv S(x-x') *(x) =(x' ) x ,; X' s (16)wf 47tr

V

where P(X') is the internal solid angle subtended by s on X', Furthermore,

if the curvature of s at X' is finite and non-singular, then W(x') = 21; then

rdv ý(X-X') 4(X) = ½(x') (17)

If the internal solid angle UX') subtended by s on X' is consistently

generalized for tle field point X, not on s .a$

'4 
9
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Q 4i , X? Ev
l(x' ) -(18)

0 XIýv ;

which is geometrically most reasonable, (14) through (16) are representable

by

Fdv 6(X-X') ý(X) "(X ') for all Xt.=f 47 ( rr al ' (19)

V

With the aid of this (19), (13) yields

f = dv p + dS.(g v- Vg) (20)
V

which is a unified representation of the Kirchhoff integration of the field
equations, valid for all field points (i.e., field points inside, on, and
outside s).

A physical interpretation, as well as a rigorous proof of the physical
meaning of both the volume and the surface integrals in (20) are of interest
next. To this end, consider a closed surface s, totally inside another
closed surface s2 (see fig. 12), a source distribution pl(X) totally localized
in the volume v1 bound by the closed surface s 1 (i.e., p1 (X) = 0 for all X
outside sj), and another source distribution P2 (distinct from pl) totally

localized in the intervening volume v 2 band by the closed surfaces sl and S 2(i.e., p2 (X) = 0 for all X inside sl and outside S2). Furthermore, let the
I field point X' be outside the closed surface s, and inside the closed surface

S2; i.e., in the volume V2 . It thus follows that i.f the closed surface s
in (20) is taken as the closed surface s 1 and s2, then by (18), (20) yields

= (dv g P2 +fdS.(g V - * Vg) +fdS.(g VO- V Vg) . (21)

V2 Si S2
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FI GURE 12

FIELD AND SOURCE POINT GEOMETRY

If, however, the closed sur~face s in -(20) is taken as the closed

suirface S2 only, then by (18), (20) yields

f' jv g9 + f dv 9 P2 + f dS( 9 V -(g 7 Vg) (22)

V1V 2  S 2

Examination of (21) and (22) reveals that the sole distinction
between these two representations of the field at the field point X1 is the
interchangeability of the closed surface integral over the closed surface s,

with the volume integral over the volume v-.. It thus follows that thte
field 'ýl at the field point X1, due solely to the source distribution pl,

can be Tepresented by eithet the volume integral

fi 93



f dv g p (23)

V1

or the closed surface integral

of dS'(g Vol - ol Vg) (24)

Si

That these volume and surface integrals (23) and (24) are indeed

equivalent can also be shown by taking the closed surface s in (20) as the

closed surface s 1 only; then, by (18), (20) yields

O= dvg p, - f dS.(g V~l - ! Vg) ; Q.E.D.; (25)

Vi

(where the (-) sign in front of the surface integral in (25) is du3 to the

fact that by Gauss' theorem the surface unit vector s must always be chosen

as outwards from the domain of volume integration; see fig. 12).

The pbysical meanings and iptexpretations of -(23) and (24) respectively

are clearly that of the swu (volume integral) of th. action-at-a-distance-

fi•ld due to a spatiaZ (volume) source- distribution and its closed surface

integraZ equivaZent, provided the field point x' and the source distribution

Pl are outside. and inside of the closed surface sl respectively.

Next, consider the field point x" chosen as inside the closed surface

sI (see fig. 12); thus, if the closed surface s -In (20) is taken as the

closed surface sl, then by (18), (20) yields for the field o" at this field

point X"

f" Jdv g p I- f- 4 Vg) ; (26)

VI Sl
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(where the C-) sign in front of the surface integral in (26) is .again for

the same reasons as stated subsequent to (25)).

If, however, the closed surface s in (20) is taken as the closed

surface s1 and s2, then by (18), (20) yields (for the field point still

chosen as X")

0 = dv g P 2 + fdS.(g V - Vg) (27)

V2  Sl

It thus follows from the previously developed physical meaning and

interpretation of the volume integral over a source distribution, and

comparison of (26) and (27), that the physical meaning and interpretation of

the closed surface integral in (26) is that of the (negative of the)

equivalent of the action-at-a-distanae-field due to a spatial source

distribution, provided the field point X" and the source distribution P2 are

inside and outside of the closed surface S1 respectively (the (-) sign again

having arisen for the previously stated reasons).

Since in the previous arguments the closed surface, the field point,

and the nonvanishing source distribution, were chosen topologically com-

pletely arbitrarily, with the sole exception that the field point and the non-

vanishing source distribution are to be on opposite sides of the closed

surface, it follows that if the surface unit vector is consistently chosen

as pointing from the field point to the source distribution, thein the

physical meaning and interpretation of the surface integral fds.(g Vý - € Vg)

is always that of the fields produced at a field point on ONE SIDE of the

surFace by the total souroe distribution 7ocated on the OTHER SIDE of the

surfacqe, and totally equivalent to the volume integral f j. p dv over this

s•ne source distribution.

This property of relating fields and sources on opposite sides of the

Kirchhoff surface integral is its fuAndamental topological property, when

applied to direct field problems- it is, however,, total-ly useless when
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applied to inverse field problems; since the latter problem is topologicallyf. - characterized by unknown fields and sources on the same side of a closed
s urface. The surface integral of interest to the inverse field problem is

U' thus a surface integral relating fields and sources on the some tide of the

v surface, relating them at least in such a fashion as to render the surface
Vintegral a useful ansatz to the inverse problem. As shown in sect. II, such

a surface integral is f ds-(g V4) + 4) Vg).

Replacing the scalar field Gauss' theorem (1) with its vector

Ic equivalent

_1:;; 1-.;-f-dv_

fdSx(VgxF -g VxF) dv x(vgxF -g VxF) ,p (28)

and applying it analogously twice to the electromagnetic vector field and

wave equations (see appendix TI)., vis-a-vis the scalar Helmholtz field
equation (2), where the vector field F iepresents the electric and magnetic

a vector fields respectively, similarly yields the familiar Stratton and Chu

~ su[30] or Franz T31) integral oepresentation of Maxwell's equations.

As in the case of the scalar field, the surface integral in (28)

relates fields and current density distributions (the source distributions)

of opposite sides of this surface; whereas the surface integral dsxvx(gF)

relates fiplds and current densities which are on the same side of the

surface.

edg 961 9
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APPENDIX I1

A REFORMULATION OF THE ELECTROMAGNETIC FIELD EQUATIONS,

11.1. THE CONVENTIONAL FREE CHARGE AND CURRENT DENSITIES REPRESENTATION

The conventional representation of Maxwell's equations is

v.D P fl)

v.B =0 (2)

×E= - aB (3r)
at

VXH-j + T (4)

where pf and J are the free charge and current densities respectively (also

referred to by some authors as the true or unbound charge and current densities);

E and B are the electric and induction fields respectively, which are funda-

mental force fields; and D and H are the displacement and magnetic fields

respectively, which are artificially derived fields. These artificially 4

derived fields are related to the fundamental fields by

= •o E + Pb (5)

H =!B - M ([6)

where Pb and N are the polarization (of the bound charges) and magnetization

fields respectively. These polarization and magnetization fields are the
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contributions to the fmdamental fields produced by local charge and current

densities in a material medium. ca and Pa are the permittivity and perme-

ability of free space respectively, collectively referred to as the inductive

capacities of free space.

In linear isotropic media, these polarization and magnetization fields

are relatable to the electric and magnetic fields respectively by the

constitutive equations

PE x °E (7)

b e

M xm H , (8)

where X and xM are the electric and magnetic susceptibilities of the linear
e X

isotropic medium respectively, collectively referred to as the susceptibilities

of the medium.

For such linear isotropic media, with the aid of (5) through (8), the

relationship between the derived and fundamental fields yields the

conventional constitutive equations

D-" E (9)

B =pH (10)

where

= K (11)

K e =I+ X e .,(12)

and

1 . •M P (13)

. (= 1 + x (14)
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where e and -p are the permittivity and permeability of the medium respec-

tively, collectively referred to as the inductive capacities of the medium;

and Ke and Km are the relative permittivity (or dielectric constant) and

relative permeability of the medium respectively, collectively referred to

as the specific inductible capacities of the medium.

For linear isotropic conducting media, Ohm's law yields the

additional constitutive equation

Jf =af E (15)

where a, is the conductivity (of free charges of the medium.

For linear isotropic media which are also spatially and temporally

homogeneous (i.e., media for which the inductive capacities are constants

neither a function of space nor a function of time), the conventional

formulation of the wave equations follows from (3), (4), (9), and (10); i.e.,

D2E aa
VxVxE + ve - = - f (16)

v = VxJ (17)
VxVxH + 1 j.€ 2  f

For the general case of inhomogeneous media (i.e., media for which

either or both of the inductive capacities are not a constant; namely, are a

function of time and/or space), the formulation of such a wave equation is in

general not possible.

The preceding equations can be classified into one of three classes:

MXWELL'S EQUATIONS: The first order differential equations (1)

through (4) relating the electric and magnetic fields to the charge and

current densities, In these equations the electric and magnetic fields are

ill
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I

intertwined and not separated. These equations are the fundamental equations

derivable from the fundamental action-at-a-distance laws of Coulomb, Faraday,

and Biot-Savart.

THE WAVE EQUATIONS: The second order differential equations (16),

(17) relating the electric or magnetic fields separately to the current

K densities.. The essential and distinguishing (from Maxwell's equations)

i property of these equations is that thL Alectric and magnetic fields are

separated, i.e., that each wave equation contains one field (electric or

magnetic) only. The term wave equation is thus possibly a misleading

misnomer; a more characteristically descriptive name might thus be the

separated equations. It should again be noted that for the general case

of inhomogeneous media, the separation of the electric and magnetic fields

into a set of wave equations of the form (16) and (17) cannot be achieved.

Maxwell's equations and the wave equations, namely, all those

equations derivable from the fundamental action at a distance laws, are
collectively referred to as the field equations.

THE CONSTITUTIVE EQUATIONS: The local algebraic equations (7), (8),

(9), (10), and (15) which relate the fundamental fields to the artificially

derived fields, or the current densities to the fields. These equations are

a description of the local properties of the material medium, such as Ohm's

law, and are essentially non-electromagnetic in nature (namely, they do not

contain the basic electromagnetic action-at-a-distance laws); in most cases,

these equations involve Newton's second law of motion and the microscopic

dynamics of the material medium.

It takes a (set of) field equations and a (set of) constitutive

equations to completely specify any electromagnetic problem. (The consti-

tutive equations often take the form of a boundary condition to the

differential field equations; the boundary conditions determining the

specific unique solution to the differential equations).

100

- .i-



11.2. THE DIFFICULTIES 'WITHTHE 'CONVENTIONAL FORMULATION

The difficulty with the conventional formulation of the field

equations is essentially the severely restricted applicability of the

resulting wave equation to the interior, and not the surface, of homogeneous

media only.

It thus immediately follows that the conventional formulation of the

integral representation of the field equations is also valid for the interior,
and not the surface, of homogeneous media only; i.e., the complete domain

of volume and surface integration must be in the interior of the homogeneous

medium.

The seriousness of this limitation can best be illustrated by the
case of a finite sized homogeneous medium of constant inductive capacities

different from those of empty space, imbedded in infinite free space, For

such a case, one clearly obtains two different wave equations (of the form

medium, neither of which is valid on the surface between the medium and the

free space. Furthermore, there exists no single wave equation valid for all

space. The conventional formulation of the integral representation of the

field equations is thus valid only if the complete domain of volume and

surface integration is completely in the interior of such a medium; this

integral representation ij thus not valid for such problems as the external

scattering by such media.

For the general case of arbitrarily inhomogeneous media, a wave

equation, though much more complicated than the form (16) and (17) is

formable; however, no appropriate Green's function is known for such a wave

equation. Without such a Green's function, the integration of the field
equations into an integral representation is thus not possible.
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11.3. THE TOTAL CIARGE'AND CURRENT "DENSITIES REPRESENTATION

I
'The source of the difficulties with the conventional formulation of

the field equations lies in their provincial view of matter, charge, and

current, and, hence, the fields. Maxwell's equations contain only the free

charge and current densities, hence, the artificially derived fields in

addition to the fundamental fields. The presence of the artificially derived

fields in Maxwell's equations furthermore injects into the field equations

some of the properties of the medium, which rightfully should be in a

separate set of constitutive equations. The distinction between free and

bound charge and current densities is artificial and a source of considerable

difficulty when dealing with non-olaesical, non-linear media such as plasmas

and semiconductors. Furthermore, all accelerating charges, whether free or

bound, radiate electromagnetic fields. It thus stands to reason that a more

fundamental formulation of Maxwell's equations would contain only the total

charge and current densities and only the fundamental fields, and thus be free

of the artificially derived fields and the artificial distinction between free

-. and bound charge and current densities. The properties of the mcdium implicit

in the artificially derived fields should then only appear in a separate set

j 'of constitutive equations. Such reasoning is further enhanced by the point

of view of an observer of electromagnetic radiation, to whom in principle no

distinction exists between electromagnetic radiation emanating from accelera-

ting free or bound charges, and who measures such radiated fundamental fields

at an observation point with the aid of the properties of the medium in which

the observation point is imbedded.

The sought reformulation of Maxwell's equations is thus a formulation

invariant to the specific properties of the medium and the mechanistic nature

of the free and bound charges in the medium; namely, a formulation stating

the universal laws of the electromagnetic theory only. All the specific

properties of the medium would thus be relegated solely to a set of

constitutive equations.

1I
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Such an invariant formulation of Maxwell's equations can be derived

directly from the basic aotion-at-a-distwne laws of Coulomb, Faraday, and

Biot-Savart, and an argument analogous to Maxwell's argument that yielded

the displacement current, utilizing an equation of continuity for the conser-

vation of the total charges only. However, for the sake of showing consistency

with the conventional formulation of Maxwell's equations, such ar, invariant

formulation will be developed next directly from the conventional formulation

and the definitions of the artificially derived fields.

Eliminating the artificially derived fields from (1) through (4) with

the aid of (5) and (6) yields

v.E =-_ (Pf - V*Pb) (18)

v.B = 0 (19)

VxE = - A (20)at

v×B = U. W f+ 4+ vxM) + VOO 21poVxloj (21)
f at

From the very definitions of the polarization and magnetization fields

associated with the material media, it follows that

V.Pb = - P f (22)

= ' (23)

VXM = j . (24)

m

where p. is the bound polarization charge density; namely, the net bound charge
density produced by the polarization field in a material medium; and JP and

JM are the bound polarization and magnetization current densities respectively;

namely, the net bound current densities produced by the polarization and

magnetization fields respectively in a material medium.

103



Since the total charge and current densities p and J respectively is

the sum of all the free and bound charge and current densities respectively,

irrespective of the mechanistic nature of these bound charge and current

densities, it follows that

S= P• - V.Pb (25)

j = j + b + vxM (26)
f' at

The invariant formulation of Maxwell's equations in terms of the total

charge and current densities thus becomes

V.E = - p (27)

v.B = 0 (28)

aB
vxE - -• (29)

aE

VxB= •o,+poco- (30)

It now becomes convenient to redefine the magnetic field H as a funda-

mental field, related to the fundamental induction field B for all media as

B . (31)go

Maxwell's equations (27) through (30), in terms of this redefined

fundamental magnetic field thus become

v.E = I p (32)

v.H = 0 (33)

VXE = - go H (34)

BE
VXH a + ;0 .3s)
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The invariant formulation of the wave equations, no longer restricted

to linear, isotropic, and homogeneous media, but univereally valid for all

media, now becomes

VxVxE + PO E - at (36)

32H
VxVxH + PoCo T2 =VXJ (37)

The three constitutive equations (7), (8), and (15), with the aid of

(23) and (24), thus immediately yield the singZe constitutive equation for

the total current density

Ja = f E + CO e E) + vx(xm H) (38)

The boundary condition for the surface of perfect conductors, i.e.,

K = nxH , (39)

where K is the surface current density and n is the outward surface unit

vector, presents a special problem that can be resolved by introducing the

magnetic vector surface conductivity distribution density (dv such that,

since J dv = K ds, the boundary condition (39) becomes the constitutive

(distribution) equation

j=dS~ XH (40)
dv

With the aid of (38), it is thus possible to introduce the generalized

constitutive equation

j aE+ca(xE)+X. vxH + (VXm + )xH (41)

f at II (1
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The equation of continuity for the conservation of the total charges

thus is

V,.• + 2p- = 0 (42)at

The time-reduced form of Maxwell's equations (32) through (35) for

monochromatic fields in terms of the total charge and current density thus is

v.E = 1 p (43)

v.H = 0 (44)

VxE = - iwpo H (45)

vxH = J + iwo E (46)

With the aid of (44), the time-reduced form of the wave equations (36)

and (37) for monochromatic fields in terms of the total current density thus is

VxvxE - k2 E = - :i.PO j (47)

v2 H + k2 H = - vxJ (48)

The time-reduced form of the generalized constitutive equation (41)

for monochromatic fields for the total current density thus is

II III . . .
I ~dS
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And the time-r~duced form of the equation of continuity for the

conservation of total charges thus is

V.=- i p (so)

A universally Valid scalar, vector, and Hertz potential theory for
the fundamental fielis only, in terms of the total charge and current

densities, can simillay wd consistently be developed.
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